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The fully developed, turbulent combined forced and natural convection between two 
vertical parallel plates kept at different temperatures was investigated through a series of 
direct numerical simulat ions (DNSs). The pressure gradient drives the mean f low upward, 
whi le  the buoyant force acts upward (aiding flow) and downward (opposing flow) near the 
high- and low-temperature walls, respectively. The Reynolds number based on the channel 
hal f-width and the friction velocity is assumed to be 150; whereas, the Grashof number 
based on the channel width and the wal l  temper3ture difference varies from 0 to 1.6 x 10  6. 
The buoyancy effect on the turbulent statistics including the mean velocity and tempera- 
ture, the Reynolds stress tensor, and the turbulent heat flux vector are examined. In the 
opposing f low, the turbulent  transport is greatly enhanced wi th both the Reynolds stresses 
and the turbulent heat fluxes being remarkably increased; whereas, in the aiding flow, the 
opposite change is observed. The DNS results presented here are compared wi th those of 
the channel f low wi th  uniform wal l  mass injection and suction (Sumitani and Kasagi 1995) 
and of the liquid metal channel f low wi th a transverse magnetic field (Ohtsubo and Kasagi 
1992). As a result, it is found that the opposing and aiding buoyancy affects not only the 
turbulent statistics but also the quasi-coherent structures in much the same way as the 
wal l  injection/suction and the Lorenz force. This correspondence should result from the 
near-wal l  force balance modif ied similarly by the additional body force or momentum 
transport. © 1997 by Elsevier Science Inc. 
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Introduction 

Two distinct modes of forced and natural convection often ap- 
pear combined together in engineering applications and environ- 
mental flows. Such a phenomenon often takes place in heat 
exchangers, turbine blades, solar panels, nuclear reactors, elec- 
tronic equipment, and silicon processes. Among these types of 
convective flows, upward flows along heated and cooled vertical 
walls are, respectively, referred to as aiding and opposing flows, 
depending upon the combination of the directions of flow and 
buoyancy. The research work in this area was already initiated in 
the 1960s (e.g., Metais and Eckert 1964), and since then many 
experimental investigations have been performed in vertically 
oriented circular pipes heated from outside, in which a gas or 
liquid flow was driven downward or upward. These early works 
mainly examined the heat transfer coefficient, which exhibited 
peculiar behavior when the buoyancy effect was increased (e.g., 
Petukhov 1977; Axcell and Hall 1978; Easby 1978; Jackson and 
Hall 1979; Tanaka et al. 1987). The experimental data accumu- 
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lated have been correlated into some useful empirical formulas 
(e.g., Jackson and Fewster 1977; Watt and Chou 1982). 

Several reports have attempted to explore the structures of 
the flow and thermal fields in combined convection flow. Steiner 
(1971) investigated the mean velocity and temperature profiles of 
the air flow aided by buoyancy in a vertical pipe, and Easby 
(1978) investigated those of the nitrogen pipe flow opposed by 
buoyancy. Nakajima et al. (1980) measured streamwise velocity 
and temperature fluctuations in aiding and opposing flows, while 
Carr et al. (1973) obtained velocity and temperature correlations 
in the aiding flow in a vertical pipe. These experiments show that 
in the aiding flow, both turbulence and heat transfer rate are 
decreased despite the increased mean flow velocity, while in the 
opposing flow, the turbulence activity is enhanced with the mean 
velocity decreased. A review can be found in Jackson et al. 
(1989). 

Despite the valuable efforts mentioned above, the detailed 
transport mechanism has not been fully revealed because of the 
extreme difficulties in experimental measurements, particularly 
in the vicinity of a wall. With progress in modern technologies, 
however, extensive knowledge of turbulent combined flow has 
become ever more desirable. For example, refinement of various 
computational codes with turbulence models certainly hinges on 
such knowledge. Hence, the objective of the present study is to 
obtain detailed statistics of the turbulent combined convection 
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along a vertical wall and to clarify the effect of buoyancy on the 
turbulent transport mechanism near the wall. To achieve this, a 
turbulent vertical channel flow with two different wall tempera- 
tures is examined with the aid of direct numerical simulation 
(DNS). This particular wall thermal condition enables us to 
investigate the aiding and opposing flows simultaneously; when 
the mean flow direction is upward, the aiding flow arises on the 
heated wall, while the opposing flow arises on the cooled wall. 

It is known that flows exist when additional forces acting in 
the flow direction, in which the turbulence is greatly modified, as 
in combined convection in the vertical channel. For example, in a 
channel flow with uniform wall injection and suction (e.g., Sumi- 
tani and Kasagi 1995) the magnetohydrodynamic (MHD) turbu- 
lent flow with the Lorenz force acting in the flow direction (e.g., 
Shimomura 1991), and the accelerated flow through a converging 
passage (e.g., Tanaka et al. 1982), the mean momentum or stress 
balance is drastically changed. Hence, we compare the present 
DNSs of combined convection with those of injection/suction 
flow performed by Sumitani and Kasagi and of turbulent MHD 
flow by Ohtsubo and Kasagi (1992) to discover similar character- 
istics in the turbulent statistics and structures of these flows. 

Numerical procedures 

The flow geometry and coordinate system of the vertical channel 
are shown in Figure 1. The two walls are assumed to be kept at 
different, but constant temperatures without fluctuations. The 
Reynolds number Re* based on the wall friction velocity u* and 
the channel half-width ~ was set to be 150. Note that u* is 
calculated from the wall shear-stress averaged on the two walls. 

The Grashof number Gr based on the temperature difference 
between the two walls AT(=  T h - T¢) and the channel width 28 
was changed from 0 to 1.6 × 106, as shown in Table 1. The 
Prandtl number Pr was assumed to be 0.71. The resultant bulk 
Reynolds number Re b based on the channel width in each case is 
summarized in Table 1. In the present calculations, the 
Navier-Stokes equations with the Boussinesq approximation, the 
continuity equation, and the energy equation are used. They are 
expressed in the following dimensionless forms. 
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magnetic flux density 
Reynolds stress anisotropy tensor, uiu j / (2k )  - (1/3)~ij 
friction coefficient, Cf = 2" r , Jp (U)  z 
specific heat at constant pressure 
distance from the wall to the maximum velocity 
location 
Grashof number, g13 AT(2~)3 /v  2 
gravitational acceleration 

Hartmann number, Ha = ~ B o ~  
second invariant of Reynolds stress anisotropy tensor, 
-bqbJ2 
third invariant of Reynolds stress anisotropy tensor, 
bijbjkbkt/3 
turbulent kinetic energy, u ju j /2  

Nusselt number, 2 q w d / ( ( T )  - Tw)/h 
Prandtl number, v / a  
pressure fluctuation 
heat flux 
Reynolds number, 2UbS/V 
Reynolds number, u~5/v 
temperature 
reference temperature 
temperature on the heated wall 
temperature on the cooled wall 
friction temperature on each wall, q~/PCeU ~ 
mean velocities 
fluctuating velocity components in x-, y-, and z-direc- 
tions 

friction velocity, gt-Xw/p 

friction velocity calculated from the wall shear stress 
averaged on the two walls 

V 0 injection and suction velocity 
x, y, z streamwise, wail-normal, and spanwise coordinates 

Greek 

ct thermal diffusivity 
13 volumetric expansion 
AT temperature difference, T h - T c 

channel half width 
e dissipation rate of k 
® mean temperature difference normalized by AT 
®m arithmetic mean temperature over the channel cross 

section 
0 temperature fluctuation normalized by AT 
h thermal conductivity 
v kinematic viscosity 
p density 

electric conductivity 
% wall shear stress 

Subscripts 

b bulk-averaged over the channel cross section 
rms root-mean-square fluctuation 
w wall value 

Superscripts 

+ normalized with wall variables on each wall, u~, T, and 
v 

* normalized with u* 
- ensemble average over x-z-plane and time 
~ instantaneous value 
( ) averaged over d 
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Heated Wall 
Th 

Aiding Flow 

Figure 1 

Cooled Wall 
Tc 

Opposing Flow 
ta~ 

Y "~-~z  Flow 
Flow g e o m e t r y  and coord ina te  system 

where T O is a reference temperature.  The variables in these 
equations are nondimensionalized by ~, u*, and AT. Referring 
to the pseudo-spectral method used by Kim et al. (1987), a 
fourth-order partial differential equation for the wall-normal 
velocity, a second-order partial differential equation for the 
wall-normal vorticity, and the continuity and energy equations 
were used to solve the flow and temperature  fields. The colloca- 
tion grid used to compute the nonlinear  terms in physical space 
had 1.5 times finer resolution in each direction to remove ali- 
asing errors. For time integration, the second-order A d a m s -  
Bashforth and Crank-Nicolson schemes were adopted for the 
nonlinear and viscous terms, respectively. The ordinary no-slip 
boundary condition was imposed on the velocity components  at 
the walls. The flow and thermal fields were assumed to be fully 
developed, so that  the periodic boundary conditions were im- 
posed at the periods of 5~r~ and 27r~ in the x- and z-directions, 
respectively. 

Four DNSs at different Grashof  numbers were performed on 
relatively coarse grid points; i.e., 64 × 48 × 64 in the x-, y- and 
z-directions, respectively, by using a workstation (DEC AI- 
phaServer 2100). The time increment in these four cases was 
0.4v/(u*) z. Each computation was initially continued for 
4800v/(u*)2 until both flow and thermal fields were judged to 
have reached a fully developed state, and then ensemble aver- 
ages over space and time were taken for 2400v/(u*)2 (10,000 
time steps) in order to obtain various turbulent  statistics and 
their budget. These results are mainly used to examine qualita- 
tively the dependence of the flow characteristics on the imposed 
buoyancy. Then, in order to obtain the numerical results with 
sufficient spatial resolution, 128 × 128 Fourier modes and 
Chebyshev polynomials up to the 96th order in wavenumber 
space were used with a time increment of O.12v/(u*) 2 for 
Gr  = 9.6 × 105 (Case 3f). This computation was started from the 
fully developed field in Case 3 and continued for 2400 v/(u*)2, 

Table 1 F low condi t ion  

Case 1 2 3 4 

Gr 0.0 6 . 4 × 1 0 5  9 . 6 ×  105 1 . 6 × 1 0 6  
Re b 4 3 5 8  4341 4 3 2 8  4 1 4 8  

Case 3 f  Kuroda et al. (1 994)  

Gr 9.6 × 105 0.0  
Re b 4 4 9 4  4 5 6 0  (Re~ = 150) 

1 . 4  . . . . . . .  ! . . . . . . . .  
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Figure 2 Dependence  of norma l i zed  f r ic t ion coef f ic ient  on 
buoyancy  effect 

and then space and time averages were taken for 4800 v/(u*~ )2 
(40,000 time steps). The computation in this case was carried out 
on a HITAC-S820/80  supercomputer  system at the Computer  
Center  of the University of Tokyo, and for one time step ad- 
vancement,  3.2s CPU time was required. 

Results and discussion 

Turbu len t  s tat is t ics in  c o m b i n e d  convect ion  

Dependence of the friction coefficient and Nusselt number  are 
shown, respectively, in Figures 2 and 3, where the experimental 
data of Nakajima et al. (1980) and the empirical correlation for 
the opposing flow proposed by Easby (1978) are also included for 
comparison. They are calculated by using the following equa- 
tions: 

Nu = 2qwd/ ( (T )  - Tw)/h (6) 

C[ = 2 ' r w / p ( U )  2 (7) 

where ( ) is a bulk-averaged quantity over d, which is the 
interval from the wall to the maximum velocity location. The 
friction coefficients and Nusselt numbers in Figures 2 and 3 are 
normalized by C[0 and Nu 0 in Case 1, respectively, except for 
Case 3f, in which Cfo is given from Kuroda et al. (1994). Note 
that the fine grid simulation of Case 3f gives Cf = 9.90 × 10 3 
and Nu = 7.42 for the aiding flow, while Cf= 7.90 × 10 -3 and 

. . . . . . . .  i . . . . . . . .  | 

2.0 Easby (1978) . . . .  Nu/Nuo= 1.O09+IT.82Gr/R% 2 4 
Nakajima et al. (1980) o Aiding flow / "  

t3 Opposing flow ,,/- • "l 

~ ,~ . - -  i~" Case 3f / 1.2 8" . . . .  ~-t3-2'-~.~. ........ o ~  ................ ' 

0.8 Present: • Aiding° flow • ~[  
0 . 4  • Opposing flow • q 

. . . . . . . .  a . . . . . . . .  

2 3 4 5 678  2 3 4 5 678  

0 . 0 0 1  0 .01  0 .1  

Gr/Reb  2 

Figure 3 Dependence  of normal ized  Nussel t  numbe r  on 
buoyancy  ef fect  
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Figure 4 Mean velocity profiles: (a) in global coordinates; (b) 
in wall coordinates 
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Figure 5 Rms velocity fluctuations (Case 3f) 

Nu = 20.94 in the opposing flow. It is evident that the friction 
coefficient is increased in the aiding flow (on the heated wall), 
while decreased in the opposing flow (on the cooled wall), with 
increasing Gr /Re~.  However, the Nusselt number exhibits an 
inverse trend; it is decreased and increased in the aiding and 
opposing flows, respectively, as the buoyancy force is increased. 
These facts are in good agreement with the results found in the 
previous investigations, although the empirical formula of Easby 
(1978) seems to overpredict the buoyancy effect at large values of 
G r / R e  2. 

The mean velocity profiles in global coordinates are shown in 
Figure 4a. It is evident that the velocity profile becomes more 
asymmetric as Gr is increased. The mean velocity profiles of 
Case 3f in the wall plot are shown in Figure 4b. Note that the 
superscript + denotes the quantity nondimensionalized by the 
wall friction velocity defined on each wall. In the aiding flow, the 
logarithmic region no longer exists, and U + is much larger than 
the velocity profile of Gr = 0, which was calculated by Kuroda 
et al. (1994). On the other hand, the logarithmic profile shifts 
downward in the opposing flow. 

The rms velocity fluctuations near the walls are shown in 
Figure 5. In the aiding flow, they are decreased. However, 
because the reduction of Vrm s+ and Wrm s+ is much larger than that 
of Urms,+ the Reynolds stress anisotropy is enhanced. In the 
opposing flow, all three components are increased with the 
anisotropy weakened. The near-wall distribution of the Reynolds 
shear stress is shown in Figure 6, where a drastic change with 
buoyancy is observed. Owing to the stress balance modified by 
the imposed buoyancy, as discussed later, the Reynolds shear- 
stress diminishes markedly in the aiding flow, while it increases 
in the opposing flow. 

Figures 7a and b show the mean temperature profiles in the 
global and wall coordinates, respectively. The mean temperature 

profile in the global coordinates also becomes asymmetric with 
increasing Gr, and the mean temperature gradient becomes 
larger in the aiding flow, while it becomes smaller in the oppos- 
ing flow. In addition, the mean temperature ®+ in the wall 
coordinates exhibits a systematic change with the imposed buoy- 
ancy; the profile shifts upward in the aiding flow and downward 
in the opposing flow as the mean velocity profile. These results 
are in good accordance with the experimental data of Nakajima 
et al. (1980). Figure 8 shows the rms temperature fluctuations. 
They are only slightly decreased and increased in the near-wall 
region (y+ < 10) in the aiding and opposing flows, respectively, as 
the velocity fluctuations. On the other hand, the temperature 
fluctuation away from the wall exhibits an opposite change; it is 
increased in the aiding flow and decreased in the opposing flow. 
This is because the temperature gradient becomes steeper (see 

! 
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Reynolds shear stress (Case 3f) 
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Figure 7 Mean temperature profiles: (a) in global coordi- 
nates; (b) in wall coordinates 

Figure 7b) and makes the production rate of 0+~ larger in the 
aiding flow. 

The two components and orientation of the turbulent heat 
flux vector are shown in Figure 9. When Gr increases, the 
wall-normal component is increased and decreased in the oppos- 
ing and aiding flows, respectively, as the Reynolds shear stress in 
Figure 6. This fact is consistent with the Nussclt number shown 
in Figure 3. However, the change in the wall-normal heat flux is 
moderate when compared with that in the Reynolds shear stress. 
Although the streamwise component is also influenced consider- 
ably and in a little more complex way, the vector orientation 
exhibits a systematic change with Gr; i.e., the heat flux vector 
near the wall is more aligned with the mean flow direction in the 
aiding flow. Note that the heat flux vector should be exactly 
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Figure 9 Turbulent heat flux vector: (a) streamwise compo- 
nent; (b) wall-normal component; (c) orientation 

aligned with the wall-normal direction at some point in the 
channel central region, where the streamwise component is zero. 

The stress balance and the budget of velocity fluctuations are 
discussed in the following. By integrating the streamwise mean 
momentum equation from the wall to y*, we obtain the follow- 
ing equation for the stress balance: 

dU* Gr ,y* dU* ] y* 
d y ~ - ~ +  R~3JO ( O - ® m ) d Y * =  ~ - . ,  - . dy ly*=0 Re* 

(8) 

where O,~ denotes the arithmetic mean (not bulk-mean) temper- 
ature averaged over the channel cross section. The three terms 
on the left-hand side of Equation 8 are the viscous stress, the 
Reynolds shear stress, and the buoyant force, respectively, and 

92 Int. J. Heat and Fluid Flow, Vol. 18, No. 1, February 1997 



DNS of combined forced and natural turbulent convection." IV. Kasagi and M. Nishimura 

(a) 

1.o~,~!otal slaear stress 

- 1 . 0  -0 .5  0 . 0  ,~ 0 . 5  1 .0  
y/o 

(b) 

total shear" stress 
"(O-O, , )dy"  1.0 Gr/  Re*3 I :  

0 .5  "-'<. ~ " i "  " . . . . . . . . . . . . . . .  . 

7; 0.0 ......... ~ - ~ ~ - , - ~  .................. =~- ............. = .................... 

. f f - - . . i  
-0.5 dU lay . . ~"'-. ._ ~ / ~  

-1  .O ' 
-1 .( - 0 .5  0 . 0  0 . 5  .0 

(Aiding flow) y /~  (Opposing flow) 

Figure 10 Stress  balance:  (a) isothermal flow (Kuroda et al. 
1994); (b) combined convection flow (Case 3f) 

the sum of these balances with the pressure gradient on the 
right-hand side. Each term in Equation 8 for Gr = 0 and Gr = 
9.6 x 105 is shown in Figures 10a and b. In the isothermal flow, 
there is no buoyancy term, and the symmetrically distributed 
viscous and Reynolds shear stresses balance with the streamwise 
pressure gradient. However, in the combined convection in the 
vertical channel, these stress distributions are deformed asym- 
metrically because of the buoyancy term imposed. This modifica- 
tion of the near-wall Reynolds stress distribution has been shown 
to be the major cause for the turbulence suppression or activa- 
tion in the combined convective flows by previous investigators; 
e.g., Tanaka et al. (1982, 1987). Note that, although the total and 
viscous stresses are only slightly changed, the Reynolds shear 
stress is drastically changed and becomes highly asymmetric. 

In the fully developed channel flow, the budget equation of 
the turbulent kinetic energy k ÷ is given as: 

0 =  
OU + 1 a 02k + 

- u + v +  Oy + 2 0 y  + u+u+u + -k 0y+2 
J 

Shear production Turbulent diffusion Viscous 
diffusion 

a au + au/~ Gr 
p+v  + - + ~ , 3 u + O  

0y + axj + axf  Re~ 

Pressure - -  Prodfiction 
diffusion Dissipation by buoyancy 
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(9) 

Figure l l  shows each term in Equation 9. Note that the vertical 
axis in Figure l l a  is enlarged twice that in Figure l lb .  It is now 
clear that the shear production term is markedly changed owing 
to the Reynolds shear stress distribution modified by the buoy- 
ancy; the shear production is decreased in the aiding flow and 
increased in the opposing flow, respectively. The other terms 
show similar behavior. Note that the production term at- 
tributable to buoyancy in Equation 9 is much smaller than the 
shear production and has a negligible effect in the present range 
of Gr. This is also the case for the budgets of the three turbulent 
kinetic energy components as well as the Reynolds shear stress, 
although not shown here. Thus, the buoyancy force does not 
affect the turbulent fluctuations directly; whereas, its effect on 
the mean flow field plays a dominant role. This is unlike the 
horizontal shear flows under density stratification (see, e.g., Iida 
and Kasagi 1995), where the pressure correlation (pressure-strain 
and pressure-diffusion) and turbulent diffusion terms in each of 
the budget equations of the Reynolds stress and heat flux are 
also markedly affected. These distinct characteristics in vertical 
and horizontal flows are consistent with the qualitatively differ- 
ent coupling manners of the Reynolds stresses and scalar fluxes 
in these flows discussed by Launder (1984). 

Dynamical similarity of the effect of buoyancy in vertical 
channel f low with those of wall injection/suction and 
magnetohydrodynamic force 

It is known that in the flow with wall injection, the turbulence is 
increased and the mean velocity is decreased, as in the opposing 
flow. On the other hand, in the suction flow and the liquid metal 
MHD flow with a transverse magnetic field, the turbulent activity 
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Figure 11 Budget of turbulent energy in combined convec- 
tion: (a) aiding flow; (b) opposing f low (Case 3f) 
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Figure 12 (a) Channe l  f l ow  w i t h  un i fo rm wa l l  in jec t ion and 
suct ion;  (b) MHD channe l  f l ow  w i th  t ransverse  magnet i c  
f ie ld 

is reduced and the mean velocity is increased as in the aiding 
flow. Hereafter,  we compare the present results of the combined 
convection in the vertical channel (Case 3f) with those of the 
channel flow with uniform wall in ject ion/suct ion and of the 
liquid metal MHD channel flow under  a uniform transverse 
magnetic field to discover some similar or common characteris- 
tics of the turbulent  statistics and the turbulent  structures. The 
latter DNS data to be compared are the injection and suction 
flow obtained by Sumitani and Kasagi (1995) and the MHD 
channel flow by Ohtsubo and Kasagi (1992). These flows are 
shown schematically in Figure 12. 

In Figure 12a, the injection and suction are given normal to 
two walls. A dimensionless parameter  Vo* ( =  Vo/u*), which 
specifies the strength of injection and suction, is 0.05. In the 
MHD flow, the magnetic field is imposed normal to the walls, so 
that  the Lorenz force damps the velocity components  in the 
plane parallel to the wall, as shown in Figure 12b. The dimen- 
sionless parameter,  which indicates the Lorenz force strength, is 
known as the Har tmann number  Ha = X / ~ B 0 ~ ,  where ~r and 
B 0 are the electric conductivity and the magnetic flux density, 
respectively. In the DNS of Ohtsubo and Kasagi (1992), the 
Har tmann number  was 4. These DNSs have been performed at 
Re* = 150 using 128 X 96 X 128 grid points as in the combined 
convection (Case 3f). 

2 0  

15 
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D is t r ibu t ions  of mean  ve loc i t ies Figure 13 

The bulk Reynolds numbers Re b and friction coefficients Cf 
(defined by Equat ion 7) in these flows are summarized in Table 
2, and the mean velocity profiles and turbulent kinetic energy are 
shown in Figures 13 and 14, respectively. In the aiding, suction, 
and MHD flows, where the turbulent  energy is decreased, the 
mean velocities are increased. On the other hand, in the oppos- 
ing and injection flows, where the turbulent energy is increased, 
the mean velocities are considerably decreased. However, in the 
aiding and suction flows the friction coefficient is increased 
because of steeper mean velocity gradients, whereas in the op- 
posing and injection flows it is decreased. 

The turbulence state can be examined in terms of the invari- 
ants of the Reynolds stress anisotropy tensor, bq = u i u J 2 k -  
~)ij/3. Figures 15a, b, and c represent the second and third 
invariants, and the angle between the wall and one of the 
principal axes on the Reynolds stress tensor, respectively. The 
second invariant of - H  is zero if turbulence is isotropic, whereas 
it takes the largest possible value of 1 /3  when turbulence has 
only one nonzero component  (Lumlcy and Newman 1977). In 
Figure 19a, a marked change in - H  appears, depending upon 
the dynamical influence imposed. When the turbulence is acti- 
vated or attenuated, - H  decreases or increases, respectively, 
because of the change in the redistribution mechanism of turbu- 
lent energy from the strcamwise component  to two other ones. It 
should be ment ioned that the enhanced anisotropy has also been 
observed in the channel flow simulations at low Reynolds num- 
bers (Kasagi and Shikazono 1995). Hence, the phenomena ob- 
served in the aiding, suction, and Har tmann flows can be identi- 
fied as a low-Reynolds number  effect. Also note that the wall- 

Tab le  2 Bulk  Reynolds n u m b e r  and f r ic t ion coef f ic ient  

F low Reb Ct 

Standard  channe l  f l ow  4 5 6 0  8 .64  X 10 3 
(Kuroda et al. 1994) 

Combined  convec t ion  4 4 9 4  9 .90  × 10 -3 (Aiding) 
(Case 3f) 7 .90  x 10 3 (Opposing) 

In ject ion and suct ion 4 3 5 7  1.25 x 10 2 (Suct ion) 
(Sumi tan i  and 6 .29  x 10 3 ( In ject ion) 
Kasagi 1995) 

M H D f l o w  4 6 1 0  8.51 x l O  3 
(Ohtsubo and 
Kasagi 1992) 

+ 
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Figure 15 Anisotropy tensor of Reynolds shear stress: (a) 
second invariant; (b) third invariant; (c) orientation of princi- 
pal axis 

limiting value of H is appreciably affected. This fact must be 
handled properly in modeling the near-wall turbulence. 

The third invariant of III  in Figure 15b is an index of whether 
a component is larger or smaller than the other two. It takes the 
smallest value of - 1/108 when a component is zero and the two 
other components are equal, while it becomes the largest of 2 /27 
when two components are zero. The change in I I I  is very similar 
to that in H. The principal axis of the Reynolds stress also 
exhibits a systematic change that it is more and less aligned with 
the streamwise direction when the turbulence is attenuated and 
activated, respectively. 

The momentum (stress) balance of the injection/suction flow 
and that of the MHD flow are shown in Figures 16a and b, 
respectively, to investigate the effects of the imposed force on 
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Figure 16 Stress balance: (a) channel f low with injection 
and suction (Sumitani and Kasagi 1995); (b) MHD channel 
f low (Ohtsubo and Kasagi 1992) 

the mean flow field. The following equations can be derived. 

__dU* = dU* y* 
dy * - u-*-~ - U* X V~ dy* y*=0 Re* (lO) 

d U__f._ + Ha 2 ry+ + 

- u + v +  + "-~% JO (U; - U + ) d y  + ay + 

dU+ y+=0 Y+ 
= dy + Re, (11) 

The additional terms induced by the injection/suction and the 
Lorenz force appear as the third terms on the left-hand side of 
Equations 10 and 11 as in the stress balance Equation 8 for the 
combined convection. These additional terms also modify the 
distribution of the Reynolds shear stress drastically, as seen in 
both Figures 16a and b. As a result, the Reynolds shear stress is 
decreased in the suction and MHD flows and increased in the 
injection flow. Thus, the effects of the injection/suction and of 
the Lorenz force on the mean flow are dynamically similar to 
that of the buoyancy force in the vertical combined convection. 

The budget of the turbulent kinetic energy k + in the injec- 
t ion/suction and MHD flows are shown in Figure 17. The 
budget equations in these flows are, respectively, given as fol- 
lows: 

aU + 1 0 bZk + 
O= - u + v  + u { u 3  v+ +-------7 

Oy + 2 Oy + ay + 

Shear production Turbulent Diffusion Viscous 
diffusion 
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O Ou-Er-b~i Ok + 
p+v + - -  (12) Oy + Ox; Ox; 11"° Oy + 0.4 

Pressure ¢~ 
diffusion Dissipation Convection ~ 0.2 

OU + 1 0 02k+ 
0 = -u+v+--Oy + 20y  + u~-ui ~U+ + Oy+2 0.0 

Shear Production Turbulent Diffusion Viscous o -0.2 
diffusion 

p+o+ 
Oy + Ox; Ox[ 

Pressure 
diffusion Dissipation 

+ H a  z[[ mz+ u &p+ +- O~P+Ox--~w+ ), -HaZ(u+u  + + w + w  +) (13)* 

MHD dissipation 
MHD1 

In the injection/suction flow, there is the convective term re- 
fleeting the wall injection and suction in Equation 12, but it is 
negligible except in the vicinity of the wall, as seen in Figures 17a 
and b. In the MHD flow, there are two terms originating from 
the Lorenz force; one of these terms (MHD1) contributes to the 
production of turbulent energy, whilst the other term (MHD 
dissipation) is a sink term. The values of these two terms, 
however, are much smaller than other terms; see Figure 17c. 
Again, it is the shear production that is most drastically changed 
in the injection/suction and MHD flows, because the Reynolds 
shear stresses are modified by the additional terms in the mean 
flow field, as shown in Figure 16. Thus, the injection/suction and 
the Lorenz force have substantial effects on the mean flow, 
modify the Reynolds stress distributions, and change the shear 
production, but they have little effect on the velocity fluctuations 
directly. This mechanism is essentially the same as that observed 
in the combined convection. 

The quasi-coherent turbulent structures in the apparently 
different channel flows above are discussed below. The low-speed 
streak and low-pressure region near the wall are shown in Figure 
18. The 3-D contour surfaces of streamwise velocity and pressure 
fluctuations are produced at the thresholds of U / ( U r m s ) m a  x = 

-1 .3  and P/(Prms)max = - - 2 . 0 ,  respectively. The visualized zone 
has a dimension of 1916 and 766 wall units in the x- and 
z-directions, respectively. As indicated by Robinson (1991) and 
Kasagi et at. (1995), the strongly negative pressure regions corre- 
spond to the turbulent vortical structures, which generate most 
of the Reynolds stress through the ejection and sweep around 
them. In the standard channel flow of Figure 18a, typical inclined 
streamwise vortices of a banana-shape arc observed most fre- 
quently with some arch-like vortical structures in the near-wall 
region, as has been reported by Robinson and Kasagi et al. We 
can also clearly see the streaky structures, which are fairly 
periodic in the spanwise direction. The corresponding turbulent 
structures in the opposing and injection flows are shown in 
Figure 18b and c, respectively, where their appearances seem 
very much similar. The streamwise vortical structures are ob- 
served more frequently and in smaller scale. The activities of 
vortices are enhanced, and the low-speed streaks become thinner 
and shorter with activated meandering than those in the standard 
channel flow. Moreover, the turbulent structures in the aiding 
and suction flows are also similar, as seen in Figures 18d and e. 
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Figure 17 Budget  of t u rbu len t  k inet ic  energy:  (a) in ject ion 
side, (b) suct ion side; (c) MHD channe l  f l ow  

In these flows, where the turbulence is suppressed, the vortices 
become weak and appear less frequently and in larger scales, as 
compared with those in the opposing and injection flows. The 
low-speed streaks become thick and very long, appearing 
straighter in the flow direction. 

Figure 19 shows the streamwise two-point correlation of the 
streamwise velocity fluctuations u near the wall. These correla- 
tions naturally diminish with distance x +, but slowly in the 
aiding, suction, and MHD flows, while quickly in the opposing 
and injection flows. This result also suggests that the streaky 
structures become more elongated in the aiding, suction, and 
MHD flows, while shortened in the opposing and injection flows. 

C o n c l u s i o n s  

* In Equation 13, q~ is a scalar quant i ty  defined by the equation: 
V2~p= Re,~V-(u X B). 

The DNS of the combined force and natural turbulent convec- 
tion in a vertical channel were performed. The following conclu- 
sions have been made. 
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The buoyancy force has a substantial effect on the mean flow 
field near the wall. It drastically changes the near-wall force 
balance, which rules the distribution of the Reynolds shear 
stress, and then the shear production rate of turbulent kinetic 
energy. This mechanism has been pointed out in previous investi- 
gations, but it is confirmed quantitatively by the present DNSs. 
For the most part, through this modified shear production, we 
see that buoyancy can also affect the turbulent fluctuations, but 
not through direct interaction with them. As the buoyancy force 
is increased, all the Reynolds stress components and the wall- 
normal turbulent heat flux are decreased and increased in the 

aiding and opposing flows, respectively. In the aiding flow, the 
anisotropy of the Reynolds stress is enhanced with its principal 
axis as well as the heat flux vector near the wall becoming more 
aligned with the mean flow direction, whereas the opposite trend 
is observed in the opposing flow. This must be attributable to the 
fact that the turbulence redistribution process has also been 
modified by the enhanced and attenuated turbulence activity. 

From extensive comparison with previous DNS results of 
channel flows under other types of dynamical effects, such as 
wall mass transfer and a magnetic field, it is found that opposing 
and aiding buoyancy affect not only the turbulent statistics but 

(a) 

(b) 

(c) 

Figure 18 Contours of low-speed streaks and vortical structures ( A x + × A z + = 1 9 1 6 × 7 6 6 ) ;  white: u/ (U ' rms)m,x=- l .3 ,  
low-speed steak, grey: p/(p+ms)max = -2 .0 ,  low-pressure region: (a) standard channel f low ((Ur+ms)rnax----2.62, (P+rns)max = 1.75); 
(b) opposing flow [(U+rns)max=2.80, (p+~s)ma×=2.97]; (c) injection side [(Ur+ms)max=3.21, (p+ms)max=4.02]; (d) aiding f low 
[(Ur+rns)ma×= 2.30,  (Pr+ms)max = 1.16]; (e) suction side [(U+rns)rnax = 1.73, (p+rns)rna,=0.68] 
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(d) 

(e) 

Figure 18 (continued) 
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Figure 19 Streamwise two-point  correlation of streamwise 
velocity f luctuations at y /5=0.03  

also the quasi-coherent  structures in much the same way as the 
wall in jec t ion/suc t ion  or  the Lorenz force. This correspondence  
should result f rom the com m on  mechanism; i.e., the near-wall 
force balance modified by the additional body force or  momen-  
tum transport .  
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